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Abstract Over a half of mammalian genomes is occupied by
repetitive elements whose ability to provide functional se-
quences, move into new locations, and recombine underlies
the so-called genome plasticity. At the same time, mobile el-
ements exemplify selfish DNA, which is expanding in the
genome at the expense of the host. The selfish generosity of
mobile genetic elements is in the center of research interest as
it offers insights into mechanisms underlying evolution and
emergence of new genes. In terms of numbers, with over 20,
000 in count, protein-coding genes make an outstanding >2%
minority. This number is exceeded by an ever-growing list of
genes producing long non-coding RNAs (lncRNAs), which
do not encode for proteins. LncRNAs are a dynamically
evolving population of genes. While it is not yet clear what
fraction of lncRNAs represents functionally important ones,
their features imply that many lncRNAs emerge at random as
new non-functional elements whose functionality is acquired
through natural selection. Here, we explore the intersection of
worlds of mobile genet ic elements (par t icular ly
retrotransposons) and lncRNAs. In addition to summarizing
essential features of mobile elements and lncRNAs, we focus
on how retrotransposons contribute to lncRNA evolution,
structure, and function in mammals.
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Introduction

At the beginning, until Darwin and Mendel created founda-
tions for understanding evolution and heredity, our knowledge
was formless void and darkness covered the face of the deep.
The term gene emerged as a name for a fundamental physical
and functional unit of heredity at the beginning of the twenti-
eth century [42]. Deciphering of the genetic code half a cen-
tury later [13] strongly tied the concept of a gene with protein
coding. However, this is only one of the many contexts in
which the term gene is being used [8] and the definition of a
gene as a unit of heredity has been evolving ever since
(reviewed in [29]). Importantly, genome and transcriptome
sequencing during the last two decades revealed that protein-
coding genes are a critical but relatively small world in the
whole universe of heritable information in terms of both, the
genome content and the genome fraction transcribed into
RNA. For example, human genome sequencing revealed that
less than 2 % of its nucleotide sequence codes for proteins,
while 55 % is composed of repetitive elements [40]. Next
generation sequencing (NGS) provided evidence for mobile
elements being one of the major factors driving genome evo-
lution [53]. Mobile elements have an ability to insert them-
selves into new genomic locations and recombine, thereby
causing genetic alterations along with multiplying their num-
bers in the genome.

In this review, we focus on intersection of two large worlds
in the universe of heritable information: mobile genetic ele-
ments (particularly retrotransposons) and long non-coding
RNAs (lncRNAs). There is a plethora of literature separately
covering mobile elements and lncRNAs (for example [12, 31,
36, 45, 62]). Here, we summarize essential features of mobile
elements and lncRNAs and focus on how retrotransposons
contribute to lncRNA evolution, structure, and function in
two main mammalian model organisms—mice and humans.
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Retrotransposons

Based on the mode of transposition, mobile elements fall into
two major classes: Class I includes Bcopy and paste^
retrotransposons and Class II includes Bcut and paste^ DNA
transposons (Fig. 1, reviewed in [36]). The latter class is charac-
terized by terminal inverted repeats and ability to release itself
with a transposase (TPase) from the genome and insert elsewhere
(hence cut and paste). However, DNA transposons do not seem
to be currently active in mammalian genomes and their remnants
are so-called DNA transposon fossils [24]. The human genome
contains >100,000 copies of short (180–1200 bp) elements with
14- to 25-bp terminal inverted repeats generated by target site
duplications [10, 40, 76]. Class I mobile elements, also called
retrotransposons, transpose through an RNA intermediate.
Retrotransposons can be further divided into four subclasses
based on their retrotransposition competence (autonomous vs.
non-autonomous) and the presence/absence of long terminal re-
peats (LTRs) at their 5′ and 3′ ends (LTR vs. non-LTR elements).

Autonomous LTR retrotransposons evolve from retroviruses
when their life cycle becomes confined into a host cell as they
lose the ability to be released and infect another cell [43, 52, 80].
Accordingly, structure of LTR retrotransposons closely resem-
bles that of retroviruses. LTR retrotransposons are ∼5–12 kb
long, they have two long terminal repeats (LTRs) flanking a
protein-encoding region, which carries RNA-dependent DNA
polymerase (POL, reverse transcriptase) but often lacks an enve-
lope (ENV) protein-encoding gene (reviewed in [36]). In the
mouse genome, there is currently one highly active LTR
retrotransposon group (Intracisternal A Particle (IAP)) and sev-
eral presumable LTR retrotransposon fossils, including Mouse
Endogenous Retrovirus type-L (MuERV-L) insertions, which
are transcribed during early development [78]. The human ge-
nome hosts a family of actively retrotransposing Human
Endogenous Retroviruses (HERVs, reviewed in [48]).
Autonomous LTR-retrotransposons usually reach hundreds to
several thousands of insertions before they die out because inserts
accumulate mutations abolishing their coding capacity. At the
same time, complementation causes that mutant transcripts com-
pete with intact ones for retrotransposition. This eventually min-
imizes retrotransposon’s chance to make a copy of a functional
element while random mutagenesis continues eliminating re-
maining functional copies.

In non-autonomous LTR elements, the sequence flanked
by LTRs does not contain open-reading frames. They are sig-
nificantly smaller than autonomous LTR elements, ranging
usually between 1 and 1.5 kb. Because of the lack of coding
capacity, their retrotransposition requires factors provided by
autonomous retrotransposons. A representative example of
non-autonomous LTR elements is Mammalian apparent LTR
Retrotransposons (MaLR, reviewed in [75]). MaLRs include
Mouse Transcript (MT) elements, which provide oocyte-
specific promoters in mouse oocytes [71].

Autonomous non-LTR elements are represented by long
interspersed nuclear elements (LINEs), which are among the
most abundant retrotransposons in mammalian genomes (868,
000 insertions in the human genome (20 %) [40] and 660,000
insertions in the mouse genome (9 %) [10]). LINE elements
are 6–7 kb long and carry two open reading frames but most of
the genome insertions are truncated at the 5′ end. Importantly,
LINE elements are resistant to the above-mentioned problem
of integration of faulty retrotransposon copies because of a
strong cis-preference of the retrotransposition machinery. In
other words, proteins translated from a LINE RNA preferen-
tially associate with and retrotranspose the RNA from which
they were translated [89].

Non-autonomous non-LTR short interspersed nuclear ele-
ments (SINEs) are relatively short sequences (<0.5 kb) related
to RNA Polymerase (Pol III)-transcribed small RNAs and do
not encode any proteins. Except of rodents and primates, animal
SINEs are usually related to tRNAs (reviewed in detail in [74]).
There are ∼1.5 million SINEs in human and mouse genomes,
which occupy ∼11 and 8 % of the genomes, respectively [10,
11]. The most studied mammalian SINEs are human Alu ele-
ments, which are derived from the small cytoplasmic 7SL RNA
and are the most abundant transposable elements in the human
genome (∼1 million insertions [40]). SINE elements in mice are
more heterogeneous. The most abundant murine SINE element
is SINE B1, which is ∼140 bp long element derived from a
portion of 7SL RNA, which has ∼560 000 copies (2.66 %) in
a haploid genome [10]. Another noteworthy murine SINE ele-
ment is SINE B2, which is a tRNA-derived ∼190 bp long ele-
ment, which has ∼350,000 copies (2.39 %) in the genome [10].

Since 1980’s, complex eukaryotic genomes were considered
loaded with selfish DNA (or Bjunk^ DNA), which expands in a
genome without contributing to (or even at the expense of) the
fitness of the organism [17, 68]. Accordingly, retrotransposons
were seen as harmful genomic parasites causing mutations and
threatening the genome integrity. This view was reinforced by
their retroviral origin and identification of disease-causing muta-
tions [34, 45]. However, retrotransposons were also proposed to
be one of the major contributors to genome evolution [15]. More
detailed analyses of eukaryotic genome fueled by NGS surge
painted a colorful picturewheremutated transpositionally incom-
petent elements can still provide functional cis-elements regulat-
ing adjacent genes such as alternative promoters, transcription
factor binding sites, enhancers, exons, terminators, and splice
junctions (Fig. 2a) [1, 22, 27, 33, 35, 44, 51, 71]. It has been
estimated that 16 % of eutherian-specific conserved non-coding
elements are derived from mobile elements, implicating their
major contribution to mammalian evolution [23, 63].
Furthermore, transposable elements are evolutionarily among
the most lineage-specific sequence elements, especially in mam-
mals [59, 82]. Mouse- and human-specific retrotransposons con-
stitute 87.0 and 51.9%of all mouse and human retrotransposons,
respectively [10].
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Long non-coding RNAs

Large-scale genome analyses brought surprising findings,
which changed perspective on BjunkDNA^, a traditional label
for a part of a genome that did not encode proteins.
Transcriptome and chromatin analyses revealed complex
RNA production and typical gene-like chromatin signatures
outside of protein-coding gene loci (areas traditionally and
doubtfully termed intergenic regions) as well as much more
complex RNA synthesis within protein-coding gene loci than
previously appreciated [16, 32, 81]. Importantly, in the current
view of genome organization, the term Bjunk DNA^ does not
need to be replaced; it is only the interpretation that should
shift from Buseless waste^ towards Bmaterial for recycling^.
When one explores RNA expression in intergenic regions and
compares same loci in different species, an idea comes to
mind of a large scrap yard, where an old material is being
recycled in a Tinuely1-like fashion (Fig. 2b).

Large-scale genome analyses also revealed large numbers
of lncRNAs that do not have an apparent protein-coding po-
tential. A handful of lncRNAs such as Xist, H19, and few
others were known already before the NGS era [46].
However, NGS began pouring lncRNAs by thousands [5,
16, 32, 85]. LncRNAs are generally >200 nt, have a bias
towards two-exon transcripts, and have predominantly nuclear
localization [16]. Their biogenesis resembles that of
mRNAs—they are transcribed by Pol II, capped, usually
spliced with a high degree of alternative splicing, and fre-
quently polyadenylated, but they are not translated into pro-
teins [32, 67, 81].

LncRNAs generally lack sequence conservation. In fact,
lncRNA promoters are more conserved than lncRNA exons

[16]. While lncRNA exons are more conserved than neutrally
evolving sequences, their conservation is lower than that of
untranslated regions in mRNAs but higher than introns of
protein-coding genes [44]. DNA sequence conservation in
genes is linked to non-coding features important for gene
structure and expression (e.g., promoters, enhances, intron
boundaries, or polyadenylation sites) and to the functionally
important information stored in the encoded RNA (e.g.,
encoded protein). However, a non-coding RNA function often
depends more on the secondary structure rather than on the
primary nucleotide sequence. Thus, a conserved secondary
RNA structure of a functionally important module in a
lncRNA can be maintained via compensating mutations while
a common primary sequence analysis of an entire lncRNA
might show only a weak conservation. For example, an
imprinting-regulating lncRNA Airn exhibits low expression,
conservation, and stability, yet it is involved in silencing Igf2r,
as the process of transcription is more important than stable
transcripts accumulation [73]. Taken together, while con-
served regions are assumed to have a function, it should not
be assumed that function needs to be associated with sequence
conservation [69].

LncRNAs are usually categorized based on their localiza-
tion relative to the nearest protein-coding gene (Fig. 3a).
Categorization by genomic position and exonic structure is
the most widely used method because current bioinformatics
expertise is not sufficient to perform reasonable function pre-
diction and classification based on lncRNA exonic sequences.
This contrasts with protein-coding genes where one can clas-
sify protein-coding RNAs and make functional predictions
based on identification of annotated functional domains
encoded in nucleic acid sequences.

LncRNAs have been linked to transcriptional regulation
and chromatin modification, especially during pluripotency
and differentiation [3, 16, 27, 47, 92]. However, their range
of roles is much broader. In terms of functions, lncRNAs are a

1 Jean Tinguely (1925-1991) Swiss sculptor known for kinetic art using
scrape yard metal material.

Fig. 1 Transposable elements.
Overview of two major classes of
transposable elements. Copy
numbers of transposable elements
per haploid genome (copies) and
fraction of the genome occupied
by each transposable element type
(%) were obtained from the
literature [10, 40]
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heterogeneous group that can be classified in many ways.
According to the place of action relative to the encoding locus,
lncRNAs are classified as cis- or trans-acting lncRNA.
Another criterion can be binding partners (protein, DNA,
RNA, or a combination) or cellular localization (nuclear/cyto-
plasmic). Here, we decided to combine classification of
lncRNA effects described in the literature [31, 86] into four
categories reflecting distinct modes of action: (i) signaling/
allosteric effects, (ii) decoying, (iii) scaffolding, and (iv) guid-
ing and tethering (Fig. 3b). Importantly, a specific lncRNA
can exert a combination of these effects as its sequence can
carry functionally different modules.

Retrotransposon sequences in lncRNAs

Retrotransposons make a strong contribution to lncRNA
sequences. Over two thirds of mature lncRNA sequences
(75 and 68 % of human and mouse, respectively) have at
least a partial retrotransposon insertion in their sequence,
which is more than other type of RNA sequences, such as
protein-coding sequences, small RNAs, or untranslated
regions [44]. The high content of retrotransposon se-
quences is likely a contributing factor to sequence diver-
sification and high complexity of lncRNAs. At the same
time, it was found that human lncRNAs rarely have ex-
tensive sequence similarity to each other outside of shared
repetitive elements [16].

Retrotransposons overlap with various lncRNA ele-
ments—an internal part of an exon, a transcription start site
(TSS), a polyadenylation (polyA) site, a splice donor or ac-
ceptor (Fig. 4). The contribution of retrotransposons to func-
tional features of lncRNA is much more than protein-coding
loci. Approximately, 23 and 30 % of non-redundant TSS and
polyA sites, respectively, used by lncRNA transcripts in the
human GENCODE v13 set, were found to be provided by
retrotransposons [44]. This strongly contrasts with
retrotransposon association with 1.7 % of TSS and 7.9 % of
polyA sites of protein-coding genes. In total, 29,519
transposable-element derived functional features (TSS,
polyA and splice sites) were identified in GENCODE v13
[16, 44].

Apart from mutated retrotransposons, which produce non-
coding RNAs themselves, some lncRNAs are almost
completely made of several different retrotransposon se-
quences. An example of such a lncRNA is UCA1. Its expres-
sion is enriched in bladder carcinomas and it conserved only
in a few primate species [87]. In addition, many annotated
lncRNAs share a significant proportion of their sequence with

Fig. 3 LncRNA classification. a LncRNA can be classified based on
their position relative to the nearest protein-coding genes. The scheme
depicts diversity of lncRNAs in terms of possible overlaps with exons and
introns of the nearest protein-coding gene. b Four major effects mediated
by lncRNAs. Shown are schemes of basic mechanisms by which
lncRNAs act

Fig. 2 Contribution of
retrotransposon sequences to
lncRNAs. a Retrotransposons can
provide different functional
sequences to lncRNAs.
Retrotransposon sequences in a
lncRNA gene scheme are
indicated by black color. pA,
polyadenylation signal. The
arrow depicts the transcription
start site and direction of
transcription. bHeureka, a kinetic
statue by Jean Tinguely in Zurich,
symbolizes her stochastic
building of a new functional
structure from used material.
Photo by Martin Moravec, 2016
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retrotransposons, for example, XIST [19], lincRNA-RoR [56],
BORG, UCA1 [87], HULC [70], SLC7A2-IT1A/B [7] etc.
Some of these mature lncRNA transcripts are almost entirely
composed of transposable elements sequences. For example,
the first three exons of the mature transcript of human
LncRNA BANCR, which is involved in melanoma cell migra-
tion [25], are derived from aMER41 retrotransposon of ERV1
LTR retrotransposon family [44]. Mouse lncRNA Borg,
which is proposed to have a role in bone morphogenesis
[79], has three of its splice site overlapping with B4 SINE
elements and MaLR family LTR elements while its second
exon is completely composed of an LTR sequence of
EVRL-MaLR family retrotransposon. A unique case of
retrotransposon sequence-enriched lncRNAs is precursors
for small PIWI-associated RNAs (piRNAs), in which accu-
mulation of retrotransposon sequences is functionally desir-
able (discussed further in the section Retrotransposons and
lncRNA functions).

All four major retrotransposon types (Fig. 1) contribute to
lncRNA exons approximately proportionally to their occur-
rence in the genome [44]. Relative to protein-coding genes,
LTR/ERV elements were found to be the most enriched
retrotransposon families in mouse and human lncRNAs, espe-
cially in the lncRNA exons and proximal to lncRNA genes
[44]. Moreover, over 40% of retrotransposon-derived TSSs in
the GENCODEv13 map within ERVs [16, 44]. In embryonic
stem cells (ESCs), the class of non-coding ESC-specific non-
annotated stem transcripts (NASTs) was strongly associated
with LTR retrotransposons, particularly with the ERVK and
MaLR LTR subfamilies in mice and with ERV1 in humans
[27]. Consistent with this, ERVK and MaLR families ap-
peared to be significantly more highly expressed in mouse

ESCs; ERV1 and ERVKs showed similar trends in human
undifferentiated ESCs [22].

Retrotransposon contribution to tissue-specific
lncRNA expression

Tissue-specific expression is one of the characteristic features
of lncRNAs. According to the GENCODE v7 data, majority
of human protein-coding genes are expressed in multiple tis-
sues whereas expression of majority of lncRNAs is restricted
to single tissues [16]. Certain tissues also exhibit enriched
lncRNA expression [38, 65]. In this context, it is worth of
noting that retrotransposons (especially LTRs) contain regula-
tory cis-acting elements, which may function as promoters or
enhancers [27, 44, 51].

Retrotransposon expression is naturally selected for
germline cells because somatic retrotransposition in a sexually
reproducing organism is not transmitted into the next genera-
tion. Therefore, to increase their copy number in the genome,
retrotransposons must direct their activity into the germline.
This rationale is consistent with the observation that testes ex-
hibit higher expression of lncRNAs among different organs,
with stronger specificity for young than for old lncRNAs [16,
65]. It is believed that chromatin remodeling during male germ
cell development provides window of opportunity for this ex-
tensive transcription and higher expression of lncRNA [77].
This window is also explored by retrotransposons, which may
lead to the birth of new or younger retrotransposon-driven
lncRNA transcripts. Contribution of retrotransposons to tissue
specific expression has also been well documented for mouse
oocytes, where several non-autonomous LTR retrotransposons
drive expression of oocyte-specific mRNAs [71]. Accordingly,
a recent study reported high expression of lncRNAs in oocytes,
from MaLR and EVRK family retrotransposons [84].

Retrotransposons do not support expression only in the
germline. There are multiple examples showing that LTR se-
quences function as enhancers/promoters also in somatic cells.
To name a few: Cap analysis of gene expression (CAGE)
method revealed that MaLR elements provide promoters in
murine adipose tissue, hippocampus, neuroblastoma, and hep-
atoma cells [22]. Murine VL30 retrotransposon LTRs were
shown to function as promoter and enhancer elements in he-
patocytes in vivo [37]. LTRs of the human ERV-9 endogenous
retrovirus (2-4000 copies/genome) possess enhancer activities
in embryonic and hematopoietic cells [54]. Importantly,
whether a retrotransposon sequence would function as a
promoter or enhancer depends on the chromatin context
while the bulk of retrotransposon sequences is silenced
by heterochromatin formation during cell differentiation
[60, 93]. This implies that expression of retrotransposon-
driven lncRNAs would emerge under conditions favoring
loss of heterochromatin marks.

Fig. 4 Four mechanisms of a new lncRNA evolution. While (i) requires
duplication of an entire locus, (ii) and (iii) involve insertions, deletions.
All three mechanisms rely on pre-existing transcriptional units. (iv) entails
a sequence change (mutation, retrotransposon insertion) leading to a for-
mation of a new promoter in a previously untranscribed region. The
newly emerged lncRNA is depicted in black. Gray boxes connected with
a dashed line represent exons. White rectangles depict protein-coding
sequences.Dark gray rectangles represent two LTRs of a retrotransposon
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LncRNAs in ESCs

A large volume of lncRNA data comes from ESCs, which are
an artificial undifferentiated cell type derived from an early
embryo, which can be propagated in cell culture while
retaining pluripotency. Retrotransposons significantly contrib-
ute to ESC-specific expression of lncRNAs, which is conceiv-
able given the reduced heterochromatin at repetitive elements
observed in undifferentiated ESCs [60]. Human and mouse
ESC lncRNA promoters are located more often in specific
LTR retrotransposon families than in the differentiated cells
[27]. Approximately 30 % of transcripts (CAGE tags) derived
from human embryonic tissues were found to be associated
with repetitive elements (16 % retrotransposon, 10 % satellite,
5 % simple repeat), particularly in LINE subfamilies [22].
Among the above-mentioned NASTs (lncRNAs), those asso-
ciated with LTR-associated promoters accumulate to higher
levels than those expressed from promoters not associated
with repeats [27]. A quarter of POU5F1, NANOG, and
CTCF-bound regions in humans and mouse were found to
be within transposable elements [51]. In addition, enrichment
for stem cell transcription factors bound at lncRNA (NASTs)
loci associated with mouse ERVK and MaLR and human
ERV1 elements was greater than for the non-expressed ele-
ments [27, 51]. Several HERVH lncRNAs were found
expressed at higher levels in ESCs than in any other tissue
or cell line [47]. Likewise, the mouse EVRK family also man-
ifested this kind of stem cell-specific expression [47].

Interestingly, ten human lncRNAs significantly upregulat-
ed in induced pluripotent stem cells (iPSCs) relative to ESCs
were identified [56]. Among them, linc-RoR, which acts as an
important modulator of iPSC reprogramming, is almost entire-
ly composed of retrotransposon-derived sequence from seven
different retrotransposon families and has an ERV1 LTR at its
TSS [47, 56]. Accordingly, it was suggested that endogenous
retroviruses shape pluripotency networks via lncRNA regula-
tion in mammals [27, 47]. This notion was corroborated by
another study, where 9241 human and 981 mouse lncRNAs
that were found to be strongly associated with LTR elements;
expressed lncRNAs (NASTs) were associated with mouse
ERVK, mouse MaLR and human ERV1 elements, which be-
come silenced by heterochromatin upon differentiation [27].

LncRNA evolution and retrotransposon
contributions

LncRNAs are poorly conserved through evolution. The pri-
mary lncRNA sequence is loosely connected with functional
conservation and importance, as exemplified by XIST, a
lncRNA controlling X chromosome inactivation in mammals
(reviewed for example in [28]). Mouse and human Xist/XIST
transcripts show 49 % sequence identity, which is lower than

5′ and 3′ UTR regions but slightly higher than introns. The
homology is not continuous but represents alternating totally
unrelated sequences and seven gap-free regions (90–160 bp)
of relatively high homology (68–86 %) [4, 66]. Mammalian
Xist is also a good example of complex lncRNA evolution
with a strong contribution of retrotransposons. It has been
proposed that Xist evolved in early eutherians from a
protein-coding gene Lnx3 by integration of transposable ele-
ments [19]. The Xist gene promoter region and 4/10 exons
retain homology to Lnx3 exons. The remaining six Xist exons
including those with simple tandem repeats have similarity to
different transposable elements. Furthermore, transposable el-
ements in Xist exons are species-specific hence contributing to
diversification of Xist transcripts during eutherian evolution
[18, 19].

Four possible mechanisms were proposed for new lncRNA
origins (Fig. 4): (i) genomic duplication of another lncRNA—
this mechanism is also common for protein-coding genes, (ii)
birth of a long non-coding RNA from a pseudogene or a
protein coding gene, which loses its coding potential, (iii)
derivation a new lncRNA from retrotransposon sequences,
and (iv) de novo emergence from a previously untranscribed
genomic location [44, 72, 83]. Retrotransposons can contrib-
ute towards birth of lncRNAs from protein-coding genes by
either disrupting the gene or producing a processed
pseudogene by reverse transcribing and integrating its
mRNA. De novo emergence of lncRNA in a previously
untranscribed location can be induced by a novel
retrotransposon insertion, which will provide a promoter.
Thus, retrotransposons can play a major role in origin and
diversification of lncRNAs. This notion is supported by anal-
ysis of lineage specific lncRNAs in mammals whose emer-
gence can be mainly credited to retrotransposon sequences
(especially LTRs) [27, 59].

Retrotransposons and lncRNA function

As mentioned above, four basic mechanisms of action were
proposed for lncRNAs: (i) signaling/allosteric effects, (ii)
decoying, (iii) scaffolding, and (iv) guiding and tethering.
LncRNAs have various biological functions, including regula-
tion of chromatin structure and transcription where lncRNA can
attract silencing or activating complexes to the locus. For exam-
ple, lncRNA Air andKCNQ1ot1, recruit a chromatin modifying
complex to the site of their transcription and silence the locus
[50, 64]. Although molecular mechanisms through which
lncRNAs act are still only partially understood, a few interesting
examples emerged concerning contribution of retrotransposons
(particularly of the SINE class) to lncRNA function.

In the first example, a non-coding RNA from a specific
retrotransposon regulates spatiotemporal control of gene ex-
pression. A specific SINE B2 element functions as a boundary
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element and its transcription is implicated in the control of
growth hormone gene (GH) activity during embryonic devel-
opment. Pituitary gland-specific expression of GH is repressed
until the embryonic day E17.5. A repressive H3K9me3 mark
observed at the GH promoter until the E12.5 is replaced by an
H3K9me2 mark by E14.5, which is completely lost by E17.5
[57]. A specific SINE B2 element located ∼14 kb upstream of
the promoter appears to regulate the temporal activation of GH
gene by bidirectional Pol II and Pol III-transcribed non-coding
RNAs, which are necessary and sufficient to enable reposi-
tioning of the GH locus between nuclear compartments.
According to the model, Pol III transcription is implicated in
the maintenance of the H3K9me3 repressive mark while Pol II
transcription correlates with the loss of heterochromatin and
gene activation [57].

Nuclear SINE B2 RNA was also implicated in transcrip-
tional repression under stress conditions. Pol III-transcribed
SINE B2 RNA forms secondary structures that can bind Pol
II and interfere with polymerase binding, hence causing tran-
scriptional block [21]. Consequently, non-coding RNA tran-
scripts frommouse SINE B2 lead to transcriptional repression
during heat shock response [20]. A similar mechanism was
reported for Alu RNA, which forms secondary structures sim-
ilar to B2 SINE RNA, directly binds Pol II, and inhibits tran-
scription during heat shock response in humans [59].

Alu elements are one of the most abundant (1.3 million cop-
ies) primate-specific repetitive elements in the human genome
[2, 40]. Alu elements regulate gene expression by acting as
silencers, promoters, or enhancers [35, 58]. They can also pro-
vide templates for A-to-I editing by adenosine deaminase acting
on RNA (ADAR) enzyme family. An Alu sequence in
lncRNAs can function as a guide and induce Staufen 1
(STAU1)-mediated mRNA decay (SMD) by base pairing with
a complementary Alu sequence harbored in the cognate mRNA
[30]. STAU1 is a double-stranded RNA binding protein, which
was shown to target mRNAs to SMD through binding a
STAU1-binding site (SBS), a 3′ UTR 19 nt stem loop structure
[49]. However, some SMD-targeted mRNAs, such as Serpine1
and Ankrd57 transcripts, lack SBS. Instead, their 3′ UTRs
contain an Alu element sequence. This sequence can then
base pair with an Alu-containing lncRNA, forming an im-
perfect double stranded stem structure mimicking SBS,
which in turn leads to SMD. This mechanism might be
much more common as many mRNAs carry Alu elements
in their 3′ UTRs and 23 % of lncRNAs carry Alu sequence
[30]. A similar mechanism of lncRNA and mRNA base-
pairing was also shown in mice for SINE elements [88].

Retrotransposons can also contribute to post-transcriptional
control in the cytoplasm by selectively stimulating
proteosynthesis, as it was demonstrated for Uchl1-AS, a
lncRNA antisense to ubiquitin carboxy-terminal hydrolase L1
(Uchl1) gene. UCHL1 is a dual function protein with
deubiquitinating and ubiquityl ligase activities expressedmainly

in neuronal cells [55]. UCHL1 has been associated with brain
function and neurodegenerative diseases such as Parkinson’s
and Alzheimer’s disease [9, 55]. Uchl1-AS transcripts, which
overlap with the 5′ end of Uchl1 mRNAs, are initially retained
in the nucleus, while Uchl1 mRNAs translocate to cytoplasm.
Upon cellular stress, Uchl1-AS transcripts move to cytoplasm,
which in turn accelerates Uchl1 mRNA translation. This stress-
induced proteosynthesis stimulation requires a particular SINE
B2 element at the 3′ end of Uchl1-AS along with the 5′ overlap
region [6]. The same antisense and SINEB2 dependence was
also reported for UXTchaperon protein [6]. The mechanism by
which SINE B2 element exerts post-transcriptional regulation is
not known. It is conceivable that it, like the mechanisms above,
involves a secondary structure, which is a signaling cue for the
assembly of translation enhancers or directly binds them.

A distinct case of guiding function of lncRNA-embedded
retrotransposon sequences is lncRNA substrates processed in-
to piRNAs, small RNAs (24-32 nucleotides) guiding repres-
sive ribonucleoprotein complexes. The piRNA pathways
(reviewed in detail in [90]) suppress retrotransposons and pro-
tect the genome integrity in the germline at both, transcrip-
tional and post-transcriptional levels. A complex biogenesis of
piRNAs from long lncRNA precursors involves a concerted
action of PIWI proteins and other RNA nucleases. Precursor
lncRNAs originate from distinct genomic regions (piRNA
cluster regions), which harbor retrotransposon sequences and
can be seen as checkpoints for screening retrotransposons
expanding through the genome. Once a retrotransposon
expanding in the genome integrates into such a checkpoint
locus, it will be recognized by the piRNA system and all
transcripts of that retrotransposon will be recognized and
targeted in the germline by complementary piRNAs [41, 90].

Finally, there are also examples linking retrotransposon-
lncRNA function to pathophysiology. For example, a trans-
acting lncRNA ANRIL, which maps to the atherosclerosis locus
on the chromosome 9p21 locus [26, 61, 91], contains an Alu
motif implicated in binding genes with a similar Alu motif. The
Alu motif mutations in ANRIL reverse trans-effects and pro-
atherogenic cellular properties [39]. A single point mutation,
which has been linked to an encephalopathy, was found in
LINE1 sequence in lncRNA SLC7A2-IT1A/B. This mutation
results eightfold downregulation of SLC7A2 intronic lncRNA
transcripts in patients brain tissue and increased apoptosis [7].
Finally, high expression of LINE-1 chimeric non-coding tran-
scripts has been observed in breast and colon cancers, which
contribute to tumor invasion and metastasis through antisense-
mediated downregulation of TFPI2 gene [14].

Summary

Retrotransposons are closely associated with birth, evolution,
expression, and function of lncRNAs. Retrotransposons provide
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mobile platforms giving a rise to novel lncRNAs from protein-
coding genes as well as from previously untranscribed regions.
Thus, retrotransposons serve as a recycling system probing at
random potential of Bjunk DNA^ and creating novel functions
through lncRNA. Retrotransposon-derived promoter and en-
hancer platforms offer synchronization and coordination of
lncRNA expression. Retrotransposons also distribute comple-
mentary sequences across the genome, providing opportunities
for guiding and tethering functions of lncRNAs. At the same
time, lncRNAs are employed by the genome defense where they
allow for surveying the retrotransposon content and mediating
their silencing.
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